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aqueous ethanol using high dilution conditions to give 1,16-dithia-4,7,10,13- 

tetraoxa[16]ruthenocenophane (lOa) as pale yellow crystals in 17% yield. In the 

same manner, the reaction of 8 with the dihalide (9b) and (9c) also gave 

1,13-dithia-4,7,10-trioxa[l3]ruthenocenophane (lob) and l,lO-dithia-3,7-dioxa[lO]- 

ruthenocenophane (10~) in 48 and 23% yield, respectively. The structures of the 

new compounds (6, 7, and lOa-c) were determined on the basis of their elemental 

analyses, IR, electronic, mass, 
1 
H-NMR and 

13 
C-NMR spectra. 
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The extraction ability of lOa-c with alkali, alkaline-earth and transition metal 

cations was measured by the Pedersen's method. 
7 

It was found that lOa-c showed 

little or no extraction ability with alkali and alkaine-earth metal cations, while 

they showed relatively high extraction ability with transition metal cations. For 

a silver cation, lOa-c have an excellent extraction ability ( 99%), compared with 

the corresponding dithiaoxa[n]ferrocenophanes. 
4a 

However, lOa-c showed 

selectivity toward Hg2+ and Tl+ [lob (95%), 1Oc (95%) and 10a (30%) for Hg 
2+ ; 10a 

(87%), lob (33%), 10~ (2%) for Tl+]. It is noteworthy that these results were 

supported by the electronic spectral study. For example, a hypsochromic shift 

(10 nm) and a decreased absorbance (15-19%) in the absorption peak at 320 nm (a 

spin-allowed d-d transition band) 
a were observed on complexing of silver nitrate 

to lOa-c in aqueous methanol (H20:MeOH=l:l), but not in the case of alkali metal 

nitrates. The electronic spectral changes are similar to those of the complexing 

of l,n-dithiaoxa[n]ferrocenophanes (3a) with metal nitrates. 
4 

The complexes of 10 with HgC12 and AgN03, (lla) and (lib), respectively, were 

isolated. These complexes showed higher melting points than the metal-free 

lignads (lOa-c) and were confirmed by microanalysis to be 1:l complexes. Their 
1 
H-NMR and electronic spectra provided further information about the structure 

of the complex (lla). In the 
1 H-NMR spectrum (CD3CN) of lla, the signals of 
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methylene protons next to a sulfur atom, a-, and B-ring 

protons of ruthenocene nucleus were shifted downfield 

only +0.19, +0.03, and -0.03 ppm, compared with those 

&7s"2 x- 

of lOa, respectively. On the other hand, the 'H-NMR 

spectrum of the complex Cp2Ru.HgCl2 (12) ' in CD CN shows 3 
n a signal at 6 5.31 corresponding to the Cp ring protons. 

lla:n=4, M=lig2+ The downfield shift of the Cp ring protons of 12, 

X=Clz compared with those of 4, is about +0.7 ppm. Hence, the 

llb:n=3, M=Ag+ difference in the chemical shifts between the free ligand 

X= NO, (lOa) and the complex (lla) seems to be attributable to 

complexation of Hg2+ cation into the crown ether part 

of the ligand, although a possibility of the direct coordination of the incorpo- 

rated Hg 
2+ 

to the Ru atom of ruthenocene nucleus cannot be ruled out. The above 

explanation was supported by the electronic spectral study. The complex lla in 

acetonitrile exhibits no charge-transfer absorption of the type Cp2Ru-_)HgC12 at 

280 nm, 
9 

although the absorption band at 320 nm showed a hypsochromic shift (10 

nm) and a decrease of its absorbance (4%). 

Further studies on the synthesis of the related ruthenocenophanes are in 

progress. 
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6. All new compounds gave satisfactory elemental analyses and spectral data. 

Selected physical and spectral data for 6, 7, lOa-c, and lla-b are as follows. 

6: m.p. 183.5-184.0°C, MS (m/e) 326 (M++l, 20%) and 325 (M+, lOO%), 'H-NMR 

(CDC13) 6 4.48 (m, 4H), 4.87 (m, 4H). 

7: m.p. 116.8-117.8'C, MS (m/e) 396 (M++l, 25%) and 325 (M+, lOO%), 
1 
H-NMR 
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(CDCl3) 6 2.25 (s, SH, 2H), 4.47 (t, J=1.8 Hz, Ha, 4H), and 4.66 (t, J=1.8 

Hz, H 
8' 

4H). 

10a: m.p. 46.2-48.0°c, MS (m/e) 499 (M++l, 28%) and 498 (M+, loo%), 'H-NMR 

(CD3CN) 6 4.74 (t, J=1.7 HZ, He, 4H), 4.61 (t, J=1.7 HZ, Ha, 4H), 3.63 (t, 

J=6.3 Hz, OCH2CH2S, 4H), 3.51 (s, OCH2CE20, 12H), 2.86 (t, J=6.3 Hz, SCc2CH20, 

4H). 13c-~M~ (CD~CN) F 88.1 cc,), 77.3 (Ca), 72.6 (C& 71.5 71.3 (OCH2), 

(OCH2), 70.9 (OCH2), 39.6 (SCH2). UV (CH3CN): 320 nm (E 472). 

lob: m.p. 38.5-39.2'C, MS (m/e) 455 (M++l, 25%) and 454 (M+, lOO%), 'H-NMR 

(CD3CN) 6 4.76 (t, J=1.7 HZ, Ha, 4H), 4.61 (t, J=1.7 HZ, H 
8' 

4H), 3.61 (t, 

J=6.3 Hz, SCH2CH20, 4H), 3.59 (s, 0CH2CH20, 8H), 2.87 (t, J=6.3 Hz, SCH2CH20, 

4H). 13C-NMR (CD~CN): 6 89.2 (Cb), 77.0 (Ce), 72.3 (Co), 71.4 (OCH2), 71.2 

(OCH2), 70.5 (OCH2), 39.0 (SCH2). uv (CH~CN) 320 nm (a 472). 

10~: m.p. lOl.O-101.5"C, MS (m/e) 411 (M++l, 23%) and 410 (M+, loo%), lH-NMR 

(CD3CN) 6 4.79 (t, J=1.7 Hz, Ha, 4H), 4.62 (t, J=1.7 Hz, H6, 4H), 3.65 (s, 

oCK2CH$:f 
4H), 3.73 (t, J= 6.3 Hz, SCH2Cf120, 4H), 3.14 (t, J=6.3 Hz, SCH2CH20, 

4H). C-NMR (CD3CN): E 90.4 CC,), 77.1 (Cc), 72.0 (Co), 71.5 (OCH2), 70.8 

(OCH2), and 39.6 (SCH2). UV (CH~CN) 320 nm (E 472). 

lla: m.p. 172.0-173.0°C, 'H-NMR (CD~CN) 6 4.93 (t, J=1.8 Hz, Ha, 4H), 4.64 

(t, J= 1.8 Hz, Ha, 4H), 3.68 (t, J=6.0 Hz, 0CH2CH2S, 4H), 3.52 (s, 0Cfi2CH20, 

4H), 2.83 (t, J=1.8 Hz, SCH2CH20, 12H). uv (CH~CN) 310 nm (E 455). 

llb: m.p. 157.0-157.5oc, 'H-NMR !CD~CN) 5 4.91 (t, ,=1.18 Hz, H e' 4H). 4.77 

(t, J=1.8 Hz, HB, 4H), 3.72 (t, J=6.3 Hz, SCH2CH20, 4H), 3.68 (s, 0CE2CH20, 

8H), 3.08 (t, J=6.3 Hz, SCH2CH20, 4H). Uv (CH3CN) 310 nm (383). 
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