Tetrahedron Letters, Vol.25, No.19, pp 1991-1994, 1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

SYNTHESES AND CHEMICOPHYSICAL PROPERTIES OF MACROCYCLIC COMPOUNDS CONTAINING A RUTHENOCENE UNIT

Sadatoshi AKABORI,^{*} Yoichi HABATA, Hiroyuki MUNEGUNI, and Masaru SATO⁺ Department of Chemistry, Faculty of Science, Toho University, Funabashi,

Chiba 274, Japan

⁺Chemical Analysis Center, Saitama University, Urawa, Saitama 338, Japan

Summary: Synthesis and extraction ability of macrocyclic compounds containing ruthenocene as an integral part of the macrocyclic skelton are reported. Also, the complexes of the l,n-dithiaoxa[n]ruthenocenophanes with transition metal cations were isolated.

Synthesis of a number of crown ethers was first reported by Pedersen twenty years ago.¹ Since that time, a large number and a variety of macrocyclic polyethers have been prepared and their cation complexing abilities have been studied extensively.² Recently, syntheses and metal cation complexing ability of macrocyclic compounds containing a ferrocene unit as an integral part of the macrocyclic skelton have been reported.³ The ferrocenophanes have received much attention because the iron atom of a ferrocene nucleus may play a role as a coordinatable heteroatom. We have previously reported that polythia[n]- (1), polyoxa[n]- (2), and oxathia[n]ferrocenophanes (3) exhibited a considerably enhanced binding with transition metal cations, compared with the corresponding ring-membered crown ethers.^{4,5} We will here report the syntheses and chemicophysical properties of novel-typed crown ethers, l,n-dithiaoxa[n]ruthenocenophanes

(10).

$$\bigcirc X \stackrel{\gamma}{\searrow}$$
Fe $Y \stackrel{\gamma}{\bigcirc}$

1: X = Y = S 2: X = Y = O 3a: X = S, Y = O 3b: X = O, Y = S The l,n-dithiaoxa[n]ruthenocenophanes (10a-c) were obtained as follows. The reaction of l,l'-dilithioruthenocene (5), which was prepared from ruthenocene (4) and n-butyllithium in the presence of TMEDA, with sulfur gave l,2,3-trithia[n]ruthenocenophane (6) in 43% yield. Reduction of 6 with LiAlH₄ in boiling ether afforded a 94% yield of ruthenocene-l,l'-dithiol (7). Disodium ruthenocene-l,l'-dithiolate (8), which was prepared from the reaction of 7 with aqueous sodium hydroxide in ethanol, was allowed to react with dihalide (9a) in

aqueous ethanol using high dilution conditions to give 1,16-dithia-4,7,10,13tetraoxa[16]ruthenocenophane (10a) as pale yellow crystals in 17% yield. In the same manner, the reaction of 8 with the dihalide (9b) and (9c) also gave 1,13-dithia-4,7,10-trioxa[13]ruthenocenophane (10b) and 1,10-dithia-3,7-dioxa[10]ruthenocenophane (10c) in 48 and 23% yield, respectively. The structures of the new compounds (6, 7, and 10a-c) were determined on the basis of their elemental analyses, IR, electronic, mass, ¹H-NMR and ¹³C-NMR spectra.⁶

The extraction ability of 10a-c with alkali, alkaline-earth and transition metal cations was measured by the Pedersen's method.⁷ It was found that 10a-c showed little or no extraction ability with alkali and alkaine-earth metal cations, while they showed relatively high extraction ability with transition metal cations. For a silver cation, 10a-c have an excellent extraction ability (99%), compared with the corresponding dithiaoxa[n]ferrocenophanes.^{4a} However, 10a-c showed selectivity toward Hg²⁺ and Tl⁺ [10b (95%), 10c (95%) and 10a (30%) for Hg²⁺; 10a (87%), 10b (33%), 10c (2%) for Tl⁺]. It is noteworthy that these results were supported by the electronic spectral study. For example, a hypsochromic shift (10 nm) and a decreased absorbance (15-19%) in the absorption peak at 320 nm (a spin-allowed d-d transition band)⁸ were observed on complexing of silver nitrate to 10a-c in aqueous methanol (H₂O:MeOH=1:1), but not in the case of alkali metal nitrates. The electronic spectral changes are similar to those of the complexing of 1,n-dithiaoxa[n]ferrocenophanes (3a) with metal nitrates.⁴

The complexes of 10 with HgCl_2 and AgNO_3 , (11a) and (11b), respectively, were isolated. These complexes showed higher melting points than the metal-free lignads (10a-c) and were confirmed by microanalysis to be 1:1 complexes. Their ¹H-NMR and electronic spectra provided further information about the structure of the complex (11a). In the ¹H-NMR spectrum (CD₃CN) of 11a, the signals of

methylene protons next to a sulfur atom, α -, and β -ring protons of ruthenocene nucleus were shifted downfield only +0.19, +0.03, and -0.03 ppm, compared with those of 10a, respectively. On the other hand, the ¹H-NMR spectrum of the complex Cp₂Ru·HgCl₂ (12)⁹ in CD₃CN shows a signal at δ 5.31 corresponding to the Cp ring protons. The downfield shift of the Cp ring protons of 12, compared with those of 4, is about +0.7 ppm. Hence, the difference in the chemical shifts between the free ligand (10a) and the complex (11a) seems to be attributable to complexation of Hg²⁺ cation into the crown ether part

of the ligand, although a possibility of the direct coordination of the incorporated Hg^{2+} to the Ru atom of ruthenocene nucleus cannot be ruled out. The above explanation was supported by the electronic spectral study. The complex **lla** in acetonitrile exhibits no charge-transfer absorption of the type $\text{Cp}_2\text{Ru} \rightarrow \text{HgCl}_2$ at 280 nm,⁹ although the absorption band at 320 nm showed a hypsochromic shift (10 nm) and a decrease of its absorbance (4%).

Further studies on the synthesis of the related ruthenocenophanes are in progress.

References and footnotes

- 1. C. J. Pedersen, J. Amer. Chem. Soc., 89, 2495 (1967).
- 2. R. E. Izatt and J. J. Christensen, "Synthetic Multidentate Macrocyclic Compounds," Academic Press, New York (1977).
- 3. G. Oepen and F. Vögtle, Liebigs Ann. Chem., <u>1979</u>, 1094. J. F. Biernat and T. Wilczewski, Tetrahedron, <u>36</u>, 2521 (1980). A. P. Bell and D. Hall, J. Chem. Soc., Chem. Comm., <u>1980</u>, 163. B. Czech and A. Ratajczak, Polish J. Chem., <u>54</u>, 767 (1980). P. J. Hammond, P. D. Beer, and C. D. Hall, J. Chem. Soc., Chem. Comm., <u>1983</u>, 1161.
- 4. a) M. Sato, M. Kubo, S. Ebine, and S. Akabori, Tetrahedron Lett, <u>1982</u>, 185.
 b) M. Sato, H. Watanabe, S. Ebine, and S. Akabori, Chem. Lett., 1982, 1753.
- 5. S. Akabori, H. Fukuda, Y. Habata, M. Sato, and S. Ebine, Chem. Lett., <u>1982</u>, 1393. S. Akabori, Y. Habata, Y. Sakamoto, M. Sato, and S. Ebine, Bull. Chem. Soc. Jpn., <u>56</u>, 537 (1983). S. Akabori, Y. Habata, M. Sato, and S. Ebine, ibid., <u>56</u>, 1459 (1983). S. Akabori, S. Shibahara, Y. Habata, and M. Sato, ibid., <u>57</u>, 63 (1984). S. Akabori, Y. Habata, and M. Sato, ibid., <u>57</u>, 68 (1984).
- 6. All new compounds gave satisfactory elemental analyses and spectral data. Selected physical and spectral data for 6, 7, 10a-c, and 11a-b are as follows.
 6: m.p. 183.5-184.0°C, MS (m/e) 326 (M⁺+1, 20%) and 325 (M⁺, 100%), ¹H-NMR (CDCl₃) & 4.48 (m, 4H), 4.87 (m, 4H).
 7: m.p. 116.8-117.8°C, MS (m/e) 396 (M⁺+1, 25%) and 325 (M⁺, 100%), ¹H-NMR

(CDCl_) δ 2.25 (s, SH, 2H), 4.47 (t, J=1.8 Hz, H, 4H), and 4.66 (t, J=1.8 Hz, H_e, 4H). 10a: m.p. 46.2-48.0°C, MS (m/e) 499 (M⁺+1, 28%) and 498 (M⁺, 100%), ¹H-NMR (CD_3CN) δ 4.74 (t, J=1.7 Hz, H_a, 4H), 4.61 (t, J=1.7 Hz, H_a, 4H), 3.63 (t, J=6.3 Hz, OCH₂CH₂S, 4H), 3.51 (s, OCH₂CH₂O, 12H), 2.86 (t, J=6.3 Hz, SCH₂CH₂O, 4H). ¹³C-NMR (CD₃CN) δ 88.1 (C_b), 77.3 (C_a), 72.6 (C_b), 71.5 (OCH₂), 71.3 (OCH₂), 70.9 (OCH₂), 39.6 (SCH₂). UV (CH₃CN): 320 nm⁻(ε 472). **10b:** m.p. 38.5-39.2°C, MS (m/e) 455 (M^+ +1, 25%) and 454 (M^+ , 100%), ^{1}H -NMR $(CD_{3}CN) \delta 4.76$ (t, J=1.7 Hz, H_a, 4H), 4.61 (t, J=1.7 Hz, H_a, 4H), 3.61 (t, J=6.3 Hz, SCH₂CH₂O, 4H), 3.59 (s, OCH₂CH₂O, 8H), 2.87 (t, J=6.3 Hz, SCH₂CH₂O, 4H). 13 C-NMR (\overline{CD}_{3} CN): 8 89.2 (C_{b}), 77.0 (C_{a}), 72.3 (C_{b}), 71.4 (OCH₂), 71.2 (OCH₂), 70.5 (OCH₂), 39.0 (SCH₂). UV (CH₃CN) 320 nm (ε 472). **10c:** m.p. 101.0-101.5°C, MS (m/e) 411 ($M^{+}+1$, 23%) and 410 (M^{+} , 100%), ${}^{1}H$ -NMR $(CD_{2}CN) \delta 4.79$ (t, J=1.7 Hz, H_a, 4H), 4.62 (t, J=1.7 Hz, H_a, 4H), 3.65 (s, OCH₂CH₂O, 4H), 3.73 (t, J= 6.3 Hz, SCH₂CH₂O, 4H), 3.14 (t, J=6.3 Hz, SCH₂CH₂O, 4H). ¹³C-NMR (CD₃CN): & 90.4 (C_b), 77.1 (C_a), 72.0 (C_b), 71.5 (OCH₂), 70.8 (OCH₂), and 39.6 (SCH₂). UV (CH₂CN) 320 nm (ε 472). lla: m.p. 172.0-173.0°C, ¹H-NMR (CD₃CN) δ 4.93 (t, J=1.8 Hz, H_x, 4H), 4.64 (t, J= 1.8 Hz, H_R, 4H), 3.68 (t, J=6.0 Hz, OCH₂CH₂S, 4H), 3.52 (s, OCH₂CH₂O, 4H), 2.83 (t, J=1.8 Hz, SCH₂CH₂O, 12H). UV (CH₃CN) 310 nm (ε 455). 11b: m.p. 157.0-157.5°C, ¹H-NMR (CD₃CN) & 4.91 (t, J=1.8 Hz, H_a, 4H), 4.77 (t, J=1.8 Hz, H_R, 4H), 3.72 (t, J=6.3 Hz, SCH₂CH₂O, 4H), 3.68 (s, OCH₂CH₂O, 8H), 3.08 (t, J=6.3 Hz, SCH₂CH₂O, 4H). UV (CH₃CN) 310 nm (383).

- 7. C. J. Pedersen, Federation Proceedings, <u>27</u>, 1305 (1968). Extraction conditions (Solvent: Water and dichloromethane (1:1). Concentration of polyether: 7×10^{-4} M. Concentration of picric acid: 7×10^{-5} M. Concentration of metal nitrates (in the case of Hg⁺², HgCl₂ was used): 0.1 M.).
- Y. S Sohn, D. N. Hendrickson, and H. B. Gray, J. Amer. Chem. Soc., <u>93</u>, 3603 (1971).
- This complex was prepared according to the literature: O. Traverso, C. Chiorboli, U. Mazzi, and G. L. Zucchini, G. Chim. Italiana, 107, 181 (1977).

(Received in Japan 30 January 1984)