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Summary: Synthesis and extraction ability of macrocyclic compounds contain-
ing ruthenocene as an integral part of the macrocyclic skelton are reported. Also,
the complexes of the 1,n-dithiaoxal[n]ruthenocenophanes with transition metal

cations were isolated.

Synthesis of a number of crown ethers was first reported by Pedersen twenty
years ago.l Since that time, a large number and a variety of macrocyclic poly-
ethers have been prepared and their cation complexing abilities have been studied
extensively.2 Recently, syntheses and metal cation complexing ability of macro-
cyclic compounds containing a ferrocene unit as an integral part of the macro-
cyclic skelton have been reported.3 The ferrocenophanes have received much
attention because the iron atom of a ferrocene nucleus may play a role as a
coordinatable hetercatom. We have previously reported that polythialn]- (1),
polyoxaln]- (2), and oxathia[n]ferrocenophanes (3) exhibited a considerably
enhanced binding with transition metal cations, compared with the corresponding

ring-membered crown ethers. 4,5

We will here report the syntheses and chemico-
physical properties of novel-typed crown ethers, 1,n-dithiaoxaln]ruthenocenophanes
(10).

@xﬁs The 1,n-dithiaoxalnJ]ruthenocenophanes (1l0a-c) were

obtained as follows. The reaction of 1,1'-dilithio-
@X\)& ruthenocene (5), which was prepared from ruthenocene (4)

and n-butyllithium in the presence of TMEDA, with sulfur

gave 1,2,3-trithia[n]ruthenocenophane (6) in 43% yield.

1: X= Y: S Reduction of 6 with LiAlH4 in boiling ether afforded a
2: X=Y= 0 94% yield of ruthenocene-1,1'-dithiol (7). Disodium

3a: X'—'S. Y=O ruthenocene-1,1'-dithioclate (8), which was prepared from
3b: X-_'O, Y=5 the reaction of 7 with aqueous sodium hydroxide in

ethanol, was allowed to react with dihalide (9a) in
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aqueous ethanol using high dilution conditions to give 1,16-dithia-4,7,10,13-
tetraoxal[l6é]ruthenocenophane (10a) as pale yellow crystals in 17% yield. In the
same manner, the reaction of 8 with the dihalide (9b) and (9c) also gave
1,13-dithia-4,7,10-trioxal13]Jruthenocenophane (10b) and 1,10-dithia-3,7-dioxal[l1l0]-
ruthenocenophane (10c) in 48 and 23% yield, respectively. The structures of the
new compounds (6, 7, and l0a-c) were determined on the basis of their elemental

analyses, IR, electronic, mass, lH—NMR and 13C-NMR spectra.6

8 9a:n=4 10a:n=4
b:n=3 b:n=3
c:n=2 c:n=2

The extraction ability of 1l0a-c with alkali, alkaline-earth and transition metal
cations was measured by the Pedersen's method.7 It was found that 10a-c showed
little or no extraction ability with alkali and alkaine-earth metal cations, while
they showed relatively high extraction ability with transition metal cations. For
a silver cation, l1l0a-c have an excellent extraction ability ( 99%), compared with
the corresponding dithiaoxa[n]ferrocenophanes.4a However, l0a-c showed
selectivity toward Hg2+ and 117 [10b (95%), 10c (95%) and 10a (30%) for ng+; 10a
(87%), 10b (33%), 10c (2%) for Tl+]. It is noteworthy that these results were
supported by the electronic spectral study. For example, a hypsochromic shift
(10 nm) and a decreased absorbance (15-19%) in the absorption peak at 320 nm (a
spin-allowed d-d transition band)8 were observed on complexing of silver nitrate
to 10a-c in aqueous methanol (HZO:MeOH=l:l), but not in the case of alkali metal
nitrates. The electronic spectral changes are similar to those of the complexing
of 1l,n-dithiaoxaln]}ferrocenophanes (3a) with metal nitrates.4

The complexes of 10 with HgC12 and AgNO (11a) and (11lb), respectively, were

3!
isolated. These complexes showed higher melting points than the metal-free
lignads (10a-c¢) and were confirmed by microanalysis to be 1:1 complexes. Their
lH—NMR and electronic spectra provided further information about the structure

of the complex (1lla). In the lH—NMR spectrum (CD3CN) of lla, the signals of



1993

methylene protons next to a sulfur atom, a-, and B-ring
protons of ruthenocene nucleus were shifted downfield
©S/>$ only +0.19, +0.03, and -0.03 ppm, compared with those
Ru MO !

of 10a, respectively. On the other hand, the "H-NMR

@S\Q X' spectrum of the complex C}_:>2Ru-HgCl2 (12)9 in CD3CN shows
n

a signal at & 5.31 corresponding to the Cp ring protons.
- = 2+ The downfield shift of the Cp rin rotons of 12
1Ma:n=4, M=Hg e do i p ring p :

X = ClZ compared with those of 4, is about +0.7 ppm. Hence, the
11b:n=3 M=Ag* difference in the chemical shifts between the free ligand
’ X,_'qo (10a) and the complex (lla) seems to be attributable to
- 3

complexation of Hg2+ cation into the crown ether part
of the ligand, although a possibility of the direct coordination of the incorpo-
rated ng+ to the Ru atom of ruthenocene nucleus cannot be ruled out. The above
explanation was supported by the electronic spectral study. The complex lla in
acetonitrile exhibits no charge-transfer absorption of the type szRu—éHgCl2 at
280 nm,9 although the absorption band at 320 nm showed a hypsochromic shift (10
nm) and a decrease of its absorbance (4%).

Further studies on the synthesis of the related ruthenocenophanes are in

progress.
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6. All new compounds gave satisfactory elemental analyses and spectral data.
Selected physical and spectral data for 6, 7, 10a-c, and lla-b are as follows.
6: m.p. 183.5-184.0°C, MS (m/e) 326 (M'+1, 20%) and 325 (MT, 100%), ‘H-NMR
(CDC13) 8§ 4.48 (m, 4H), 4.87 (m, 4H).
7: m.p. 116.8-117.8°C, MS (m/e) 396 (M'+1, 25%) and 325 (M, 100%), ‘H-NMR
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(CDC1,) & 2.25 (s, SH, 2H), 4.47 (t, J=1.8 Hz, H_, 4H), and 4.66 (t, J=1.8
Hz, HB' 4H) .

10a: m.p. 46.2-48.0°C, MS (m/e) 499 (M'+1, 28%) and 498 (M', 100%), ‘H-NMR
(CDJCN) & 4.74 (t, J=1.7 Hz, H,, 4H), 4.61 (t, J=1.7 Hz, H,, 4H), 3.63 (t,
J=6.3 Hz, OCH,CH,S, 4H), 3.51 (s, OCH,CH,0, 12H), 2.86 (t, J=6.3 Hz, SCH,CH
aH).  lc-nMr (CD,CN) 8 B8.1 (Cp), 77.3 (Cy), 72.6 (C,), 71.5 (OCH,), 71.3

(OCH,), 70.9 (OCH,), 39.6 (SCH,). UV (CH,CN): 320 nm (s 472).

10b: m.p. 38.5-39.2°C, MS (m/e) 455 (M'+1, 25%) and 454 (M', 100%), ‘H-NMR

(CD3CN) § 4.76 (t, J=1.7 Hz, Ha, 4H), 4.61 (t, J=1.7 Hz, HB, 4H), 3.61 (t,

J=6.3 Hz, SCH,CH,0, 4H), 3.59 (s, OCH,CH,O, 8H), 2.87 (t, J=6.3 Hz, SCH,CH,O,

20

13 27=2 27=2 2772
4H) . C-NMR (CD3CN): 8 89.2 (Cb), 77.0 (Ca)' 72.3 (CB), 71.4 (OCHZ), 71.2
(OCH2), 70.5 (OCH2), 39.0 (SCHZ). uv (CH3CN) 320 nm (e 472).

10c: m.p. 101.0-101.5°C, MS (m/e) 411 (M++l, 23%) and 410 (M+, 100%), 1H-NMR

(CD,CN) 8 4.79 (t, J=1.7 Hz, Hy, 4H), 4.62 (t, J=1.7 Kz, Hy, 4H), 3.65 (s,
OC§2C§ O, 4H), 3.73 (t, J= 6.3 Hz, SCHZCEZO, 4H), 3.14 (t, J=6.3 Hz, SCEZCH2O,
48).  TC-NMR (CD,CN): & 90.4 (C,), 77.1 (C_), 72.0 (Cg), 71.5 (OCH,), 70.8
(OCH,), and 39.6 (SCH,). UV (CH,CN) 320 nm (e 472).

1la: m.p. 172.0-173.0°C, L‘H-NMR (CD,CN) 8 4.93 (t, J=1.8 Hz, H_, 4H), 4.64
(t, J= 1.8 Hz, Hy, 4H), 3.68 (t, J=6.0 Hz, OCH,CH,S, 4H), 3.52 (s, OCH,CH
4H), 2.83 (t, J=1.8 Hz, SCH,CH,0, 12H). UV (CH,CN) 310 nm (s 455).

2772
11b: m.p. 157.0-157.5°C, lH—NMR ZCD3CN) 5 4.91 (t, J=1.8 Hz, Ha’ AH). 4.77
(t, J=1.8 Hz, HB, 4H), 3.72 (t, J=6.3 Hz, SCH

O,

27=2

,CH,0, 4H), 3.68 (s, OCH,CH,O,
8H), 3.08 (t, J=6.3 Hz, SC§2CH20, 4H). UV (CHBCN) 310 nm (383).
C. J. Pedersen, Federation Proceedings, 27, 1305 (1968). Extraction

27=2

conditions (Solvent: Water and dichloromethane (1:1). Concentration of
polyether: 7 x lO_4 M. Concentration of picric acid: 7 x 10_5 M. Concen-
tration of metal nitrates (in the case of Hg+2, HgCl2 was used): 0.1 M.).
Y. S Sohn, D. N. Hendrickson, and H. B. Gray, J. Amer. Chem. Soc., 93, 3603
(1971).

This complex was prepared according to the literature: O. Traverso, C.
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